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Outline 

!  Introduction, overview of IMPACT-Z 
 
!  Modeling nonlinear integrable optics in IOTA 

 - first-principles symplectic tracking in the ideal IOTA insert 
 - characterization of realistic insert magnetic fields using          
         surface methods (for tracking with fringe fields) 
 - understanding the effects of “small-ring” nonlinearities  
   

!  Near term plans 
 
!  Conclusions 



 
 

Mitigation of space charge induced beam halo using 
nonlinear integrable optics in IOTA (with protons) 
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•  Space charge mitigation: electron lenses/columns, nonlinear integrable lattices 

•  Will this work in a real machine?  To resolve beam losses at the level needed 
requires massively parallel long-term tracking with self-consistent space charge. 

•  Integrable Optics Test Accelerator (IOTA) 

S.Nagaitsev, IOTA Program 26 

Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes

Small amplitudes
(0.91, 0.59)

Large amplitudes

0.5 1.0

0.5

1.0

νx

νy

A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

- Novel accelerator physics:  strongly nonlinear design 
- Experimental test bed for SC mitigation schemes 
- Run first with electrons, then low-energy protons 
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FIG. 1: Histogram plots of the 2D phase space projections initially (left) and after 500 passes (right) for the linear
lattice. Blue dots indicate particles outside of 2 RMS beam radius. The pre-halo indicated by the blue dots

uniformly fills the projections and accounts for 1% of the total beam current.

FIG. 2: Histogram plots initially (left) and after 500 passes (right) for the IEL. Note the hourglass shape of the
properly matched IEL beam.

ple set of Poincaré surfaces of section for five particles is
shown in figure 3.

By appearance this would seem to indicate that space
charge has broken the integrability of the trajectories,
but they remain bounded. The exact details of this plot
are di�cult to divine in real space, but in Fourier space it
is transparent. The tune diagram in figure 4 shows that
particles in the IEL, even with similar amplitudes for
their nonlinear oscillations, have di↵erent frequencies of
motion, and in many cases have relatively strong subhar-

monics. Therefore, if space charge drives a particle from
one amplitude to another in the IEL, its oscillations will
have a di↵erent tune. We observed similar e↵ects in the
chaotic bounded octupole lattice and nearly-integrable
FODO lattice cases, and will elaborate on this in future
publications.

The recent work in [11] has developed a new paradigm
for designing highly-nonlinear particle accelerator lattices
that simultaneously demonstrate strong frequency shift
with amplitude and integrable two-dimensional single-
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nonlinear magnetic insert 

using conventional linear design using nonlinear integrable design 

1S. Webb et al, p. 2961, IPAC 2012  

nonlinear decoherence1 

halo 

Fermilab 



 
 

Overview of advanced computing/modeling using  
IMPACT-Z 

final longitudinal  
phase space 

Δ
 γ

> 100, 000 cores 

 The$IMPACT*Z$code$&$physics$model!
  s-based symplectic particle tracking using maps 
  Poisson solvers for 6 distinct boundary conditions 
  standard beamline elements, RF and RW wakefields 
  field, misalignment, and rotation errors 
  multi-turn tracking with simulation restart 
  efficient parallelization,  access to NERSC 

 The$IMPACT$code$suite$is$used$by$>$40$$
$$$$ins=tutes$worldwide$

  successfully applied to both electron & proton  
     machines: 

  CERN PS2 ring 
  LCLS-II linac   

  unprecedented resolution:  ~2B macroparticles 
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z (mm) 
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•  First-principles symplectic tracking in the ideal IOTA insert 



 
 

The IOTA magnetic insert was implemented in IMPACT-Z 
for modeling nonlinear integrable motion. 
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2nd order symplectic integrator 

space charge step 

map step 

Nonlinear insert element based on D&N ideal vector potential1 (compare Synergia) 

 
 Input arguments:  L (m), nSC, nMap, t, c (m1/2), µ0 

 

1V. Danilov and S. Nagaitsev,PRSTAB 13, 084002 (2010)  
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Fig. 2:  (Left) Magnetic field lines for the nonlinear elliptic magnet based on [9].  (Right) Equipotentials 

for the nonlinear elliptic magnet based on [9].  Figures are taken from [32]. 

 
 

Fig. 3:  Quadrupole gradient strength as a function of longitudinal coordinate for the nonlinear elliptic 
magnet based on [9], shown for a magnet with 20 distinct segments [32]. 

 
 Once reasonable agreement with other codes has been attained at moderate resolution, we will 
perform a massively parallel simulation of the IOTA lattice at high resolution, with the goal of predicting 
beam loss rates with a relative accuracy of 10-6 or better.  A large number of simulation particles will be 
used (in the range 100M-1B) in order to achieve the statistics required to accurately resolve losses at this 
level, which is required ensure that power deposition to the chamber walls remains below ~1 W/m.  To 
achieve this, simulations will be run using several-10K processors on the newest supercomputer, Cori, at 
the National Energy Research Scientific Computing Center (NERSC).  These simulations will serve to 
validate simulations of beam loss performed using other codes, to resolve beam-loss effects that require 
extraordinarily high fidelity, and to set the stage for the remaining tasks to follow. 
 
2.2.2   Task 2:  Investigate the effects of numerical noise on long-term tracking with space charge. 
 
 Numerical artifacts are an unavoidable feature of self-consistent, long-term tracking of beams 
with space charge, and are of critical interest to the intense beam community.  For example, because the 
number of simulation particles used to sample the beam is typically much smaller than the number of 
physical particles, discrete-particle noise produces a collisional effect similar to intrabeam scattering, 
driving unphysical emittance growth and tune spread in the simulated beam.  (See Figure 4.)  These 
effects of numerical noise are under active investigation by the accelerator physics community, but many 
questions remain unresolved [27-29]. In addition, existing treatments rely on the linearity of the magnetic 
lattice, and new techniques will be needed to understand these effects in the presence of highly nonlinear 
lattices. 
 

x 

y 

Novel features allow the user to 
easily vary the number of 
segments and SC kicks for 
numerical convergence studies. 
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z (segment) 

Equipotentals 
1.8 m 

space charge 
kick H = H1 +H2Hamiltonian: 

Symplectic map for a step of length    : 

M(⌧) = M1

⇣⌧
2

⌘
M2(⌧)M1

⇣⌧
2

⌘
+O(⌧3)

2-level Hamiltonian splitting (Yoshida) 

⌧



 
 

The IOTA magnetic insert was implemented in IMPACT-Z 
for modeling nonlinear integrable motion. 
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Novel features allow the user to 
easily vary the number of 
segments and SC kicks for 
numerical convergence studies. 
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z (segment) 

Equipotentals 
1.8 m 

space charge 
kick H = H1 +H2Hamiltonian: 

Symplectic map for a step of length    : 

M(⌧) = M1

⇣⌧
2

⌘
M2(⌧)M1

⇣⌧
2

⌘
+O(⌧3)

2-level Hamiltonian splitting (Yoshida) 

⌧

two invariants H and I 
are preserved (< 10-4) 

A single integrable orbit in a Toy lattice 



 
 

Problem:  Original expressions of Danilov and Nagaitsev are not 
ideal for numerical tracking (complicated, subject to instability). 
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•  The vector potential takes a complicated form that relies on a variable transformation in 
      the plane (X,Y) that is poorly behaved in the midplane (Y=0). 
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vanishing Jacobian 

•  Derivatives of the vector potential are built from 
     expressions with vanishing denominators in the  
     midplane. 

•  Particles that cross the midplane repeatedly         runaway coordinates and momenta. 

•  This can be avoided using Taylor series in Y, with a resulting loss in numerical accuracy. 
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Integrability requires that we search for a 2D magnetic vector potential As satisfying: 

Complex representation as a single ODE: 

z = x+ iy F = As + i 

, 

New first-principles theory of 2D nonlinear integrable potentials:  
concise, simple, and avoids a numerical instability. 

F (z) =
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1� z2

◆
arcsin(z)

Simple solution: 

C. E. Mitchell, “Complex Representation of Potentials and Fields for the Nonlinear Magnetic Insert of the Integrable Optics Test 
Accelerator,” LBNL-1007217 (2017), to be submitted Phys. Rev. ST Accel. Beams 
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•  Much simpler than the original expressions of Danilov & Nagaitsev, equivalent content. 
•  Avoids small denominators in the midplane during tracking due to variable transformation. 
•  No Taylor expansion of the vector potential near the midplane is necessary. 
•  The invariants of motion (key diagnostics) have been expressed using the same formalism. 

  Code distributed to IOTA collaboration, freely available. 



 
 

Tracking Implementation Using a Complex Potential:   
Matched KV Beam Benchmark in the Toy Lattice (100 Turns) 

Final beam distribution after 100 turns 

Numerical difference in a single orbit 

final particle distribution obtained using  
original algorithm based on real-valued  
potential from D&N (with Taylor series) 

final particle distribution obtained using  
algorithm based on complex potential 

First moment of the H invariant 

× 10-6 

Without the Taylor series, the 
D&N potential produces NaN 
within the first 5 turns. 
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H invariant – final values 
agree to all digits 
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•  Characterization of realistic insert magnetic fields using 
    surface methods (for tracking with fringe fields) 
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•  Consider the following sequence of approximations (insert shown from midpoint to exit): 

1       2      3        4       5       6       7       8       9 

0"

0.1"
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0"
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0.5"
0.6"
0.7"
0.8"
0.9"

1" 2" 3" 4" 5" 6" 7" 8" 9" 1       2      3        4       5       6       7       8       9 

ideal IOTA insert 
segmented 

segmented w/ gaps with 3D fringe fields 

Problem:  The idealized model of the IOTA insert is non-
Maxwellian, and neglects fringe field/segment effects. 
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(data from RadiaBeam) 

transverse  
fields only 

transverse  
fields only 

transverse  
fields only 



 
 

What is needed:  a concise, smooth representation of the 
insert vector potential based on 3D magnetic field data. 

14 

•  For extracting symplectic maps or using a symplectic integrator, one begins with 
     a Hamiltonian of the form (straight element, s as the independent variable): 

H(x, p
x

, y, p
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, t, p
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•  Typically, it is necessary or beneficial to perform a Taylor series about the design 
      trajectory through the beamline element, which will require a Taylor series in 
      Ax, Ay, As in the transverse variables x, y. 

"  How do we extract a vector potential A from a magnetic field B on a grid? 

"  How do we reliably extract the Taylor coefficients of A (or its derivatives)? 

Limited by numerical noise in the data! 



 
 

Interpolate Data!

onto Surface!

Data on 3-D Grid from!

Electromagnetic Code!

Compute Design!

Trajectory  zd        !

and Transfer!

Map M         !

Integrate Surface Functions!

Against Kernels to Obtain !

an Analytic Representation !

of Interior Fields/Vector!

Potential!

Compute Coefficients of !

Hamiltonian Taylor!

Series Expansion about!

Design Trajectory!

•  Maxwell equations are exactly satisfied. 

•  Numerical error is globally controlled –  
  maxima occur on the fitting boundary. 

•  Surface integration is smoothing – derivatives  
  and resulting map are robust and insensitive to  
  numerical errors. 

Use Green’s function 
for special domains 
(cylinder, box) 
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Surface methods provide a well-established technique for extracting high-order derivative  
information in the presence of noise by exploiting the structure of Maxwell’s equations. 
 

Solution:  Use surface methods to extract a vector 
potential and transfer map from 3D magnetic field data. 
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where the generalized gradients are given by2: 

ψ(x, y, s)

1C. Mitchell and A. Dragt, Phys. Rev. ST Accel. Beams 13, 064001 (2010). 
2M. Venturini and A. Dragt, Nucl. Instrum. and Meth. Phys. Res. A 427, 387 (1999).  

15.2. USE OF POTENTIAL DATA ON SURFACE OF CIRCULAR CYLINDER 1003

Figure 15.2.1: A circular cylinder of radius R, centered on the z-axis, fitting within the bore
of a beam-line element, in this case a wiggler, and extending beyond the fringe-field regions
at the ends of the beam-line element.

C [n]
m,↵(s) =

in

2mm!

Z 1

�1

kn+m�1

I 0m(kR)
B̃↵

⇢ (R,m, k)eiksdk

Fourier coefficients of  
normal B field on the surface. 

Generalized gradients provide a robust, complete 
description of the 3D vector potential using surface data.  

Reference trajectory is a straight line or nearly a straight  
line along the axis.  Normal component of B on a cylinder is used. 
 
Expansion of                  as a power series in x and y 
 
Power series for the vector potential A in the Coulomb gauge1: 



 
 

The generalized gradients for the ideal IOTA insert can 
be determined analytically (for benchmarking). 

17 

s̃

C
id
e
a
l

2
n
,s
(s̃
)/
�
n

Generalized Gradients of the Ideal IOTA Insert 
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2n,s (s̃) =

�n

{1 + s̃2 tan2(⇡µ0)}n+1

Generalized gradients m=2 (quadrupole) 
through m=8 are shown for the nominal 
phase advance of                  .  
 
Each quantity is normalized by its 
value at the magnet midpoint (s=0). 
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Values at the magnet midpoint are given by: size of derivatives are  
controlled by phase advance 

s̃ = 2s/L

Fed into the Hamiltonian to extract the linear map + Lie generators via map equations. 



 
 

The linear map was determined exactly and used to 
study the effects of introducing segments and gaps.   
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•  Example:  Quadratic convergence to the ideal linear map as the number of segments is  
     increased, while the filling factor is held fixed.  (τ =0.45, µ0=0.3, L=1.8 m) 
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No gaps (f = 1.00) 

⇠ O((�L/L)2)

Convergence with number of segments 

•  Work is underway to investigate the nonlinear generators for the factorized Lie  
     map of the IOTA insert, using tools available in MaryLie/IMPACT. 

matrix spectral 
norm 

ΔL 

Δs 

ΔL 

Δs 

D D D Q D Q 

filling factor 
f = Δs / ΔL 

4.2⇥ 10�3
At nominal IOTA 
parameters: 

Model for insert segments and gaps 



 
 

Generalized gradients were extracted from RadiaBeam 
3D magnetic field data using surface methods. 
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where the use of Fubini’s theorem is justified by the fact that � 2 L2(R) implies � 2 L2([�⇤, ⇤]),
which implies � 2 L1([�⇤, ⇤]).

It follows from the Fourier inversion theorem that:

lim
⇤!1

||f � f
⇤

||
2

= 0. (47)

Lanczos filter for Gibbs phenomena (reduce overshoot and ringing w/ little e↵ect on rise):

�(k, ⇤) =
sin(⇡k/⇤)

⇡k/⇤
, (48)

where ⇤ is the wavenumber cuto↵. Note that ⇤ is the first zero of �(k, ⇤). If I apply this filter,
then will the resulting gradients still produce a solution  that satisfies the Laplace equation? In
particular, is applying this filter in k equivalent to performing a numerical smoothing operation
on the original surface data? Yes, in fact it is equivalent to replacing the original surface data
with “smoothed” surface data that is obtained by taking the convolution in z between the original
surface data and a kernel. For example:

f
⇤

= f ? g
⇤

, g
⇤

(z) =
sin(⇤z)

⇡z
. (49)

f�

⇤

= f ? g�
⇤

, g�
⇤

(z) =
1

2⇡

Z
⇤

�⇤

�(k, ⇤)eikzdk. (50)

If the filter � is given by the Lanczos filter, then

g�
⇤

(z) =
⇤

2⇡2
[Si(⇡ � ⇤z) + Si(⇡ + ⇤z)] . (51)

As long as we consistently use the same filter for all generalized gradients, then we obtain a
Maxwellian set of generalized gradients corresponding to “smoothed” surface data. In other words,
we can apply the desired filter to the original surface data (in either the spatial or wavenum-
ber domain) and compare the result with the original data. This process will introduce some
error/di↵erence, which we know by construction is maximum on the surface and smaller in the
interior. Thus, if we can bound the error to within a desired tolerance, then we have chosen a good
filter.

Table 1: Nominal design parameters of the IOTA nonlinear insert prototype, as taken from [5].

Parameter Symbol Value Unit

Strength parameter ⌧ 0.45 -

Transverse scale factor c 0.009 m1/2

Phase advance across NLI µ
0

0.3 -

Length of NLI L 1.8 m

Beta at NLI midpoint �⇤ 0.6538 m

Segment length �s 6.5 cm

Magnetic rigidity (150 MeV e�) B⇢ 0.502 T-m

9

Magnetic field 
on cylinder surface1 

Computed generalized gradients 

quadrupole term octupole term 

good agreement with ideal  
generalized gradients near the  
midpoint of each segment 

numerical noise remains an issue 
in computing very high-order  
multipoles (~C8,s ) 

Fringe fields introduce 1.2% error into the linear map 

1Data provided by F. O’Shea (RadiaBeam).  See eg, F. O’Shea et al, PAC2013. 



 
 

j 
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•  Understanding the effects of “small-ring” nonlinearities 



 
 

Problem:  Unexpected linear emittance growth observed 
in the IOTA lattice (insert off, no SC) using Synergia. 
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Simulation by 
C. Hall (RadiaSoft) 
 
First observed by 
E. Prebys (FNAL) 

Similar emittance growth not  
observed in previous tracking  
studies using the code PTC. 
 
Problem traced back to a  
non-symplectic 2nd-order thin  
lens fringe field kick applied at  
dipole entrance/exit in Synergia 
(under repair). 
 
Suggests the importance of accurate 
fringe field models, and the possible 
importance of fringe field and other  
“small ring” nonlinearities to IOTA  
performance. 

2% 

In Synergia studies of IOTA with space charge, the arc external to the insert is typically linearized 
in order to make theoretical progress in understanding the interplay between SC and integrability. 
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•  Tracking performed using both IMPACT-Z and ML/I. Initial emittance (rms):  1.95 mm-mrad. 
•  Both codes use a 3rd-order symplectic dipole model with 3rd-order hard-edge fringe fields. 

IMPACT-Z 
00 

Horizontal and vertical emittances 

✏ x
,✏

y

(m
m
-m

ra
d
)

✏
x

✏y

p
✏ x
✏ y

(m
m
-m

ra
d
) 3rd order symplectic dipoles w/ exact drifts 

linear symplectic tracking w/ exact drifts 
linear symplectic tracking 

Geometric mean of emittances 

IMPACT-Z 

~0.03% amplitude 

~0.2% amplitude 

Long-term tracking studies reveal that kinematic and dipole nonlinearities lead to acceptable 
bounded oscillations in both X, Y emittance with an amplitude of ~0.2%. 
 
A complete, realistic treatment of dipole fringe fields requires the use of surface methods.  

Significant emittance growth is not observed over ~100K 
turns in IMPACT-Z (insert off, no SC). 



 
 

In the IOTA lattice (insert on, no SC), 2nd/3rd-order dipole 
effects lead to diffusion of the two invariants. 
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IOTA Lattice (2.5 MeV p) 
2 nonlinear inserts ON 
    L=1.8 m, t=0.45,  
    c = 0.009 m1/2, µ0=0.3 
Matched nonlinear KV beam  
    ε0 = 3.9 mm-mrad, σδ = 0 
 
 
Rapid mixing over the first 2-3  
turns, followed by slow diffusion. 

The corresponding value of σI /<I> (for the second invariant) grows by 1% over 8000 turns. 
 
Expected to be less problematic for a large ring such as the proposed Rapid Cycling Synchrotron. 

�
H
/
hH

i
[%

]

Diffusion of the H invariant (IMPACT-Z) 

 
 

Evolution of the first invariant with the inserts on  
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•  Tracking performed using a matched nonlinear KV distribution with ε0 = 3.9 mm-mrad. 

�
H
/
hH

i
[%

]
Slow relative growth in <H> ~ 0.15%. 

phase mixing 
first 50 turns 

Kinematic effects plateau at 0.2%.  

- constant if H invariant is preserved 
- zero for a “nonlinear KV” distribution 

3rd order symplectic dipoles w/ exact drifts 
linear symplectic tracking w/ exact drifts 

linear symplectic tracking 
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Scaling of kinematic and dipole nonlinear effects with 
initial beam emittance (σH evaluated at turn 2,000) 

Note                                .  
 
To ensure  
requires ε0 < 4 mm-mrad. 

�H/hHi ⇠
p
✏0

�H/hHi < 2%
✏0 (mm-mrad)

�
H

(m
m
-m

ra
d
)

Small 
nonlinear 
kinematic 
effects  
(~0.3%) 

3rd order symplectic dipoles w/ exact drifts 
linear symplectic tracking w/ exact drifts 

linear symplectic tracking 
Apparent scaling: 

�H ⇡ A✏3/20

A = 0.01 (mm-mrad)�1/2

nominal 
emittance 

Growth in σH after 2K turns (IMPACT-Z) Larger-emittance beams 
sample stronger non-ideal 
nonlinear effects. 
 
Clear scaling trend for the size 
of dipole-induced diffusion of 
the H invariant. 
 
Scaling trend continues up to 
ε0 ~ 8 mm-mrad. 

Parameters are the same 
as those on the previous slide. 



 
 

Near-Term Plans 
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Over the next several months: 
 
•  Additional studies using the generalized gradient series for the nonlinear insert to 

investigate fringe field effects on long-term evolution of the two invariants. 

•  Benchmarking of Impact-Z simulations of the full nonlinear IOTA lattice with space charge 
(insert on) against Synergia at moderate resolution before scaling up simulation size. 

 
•  Collaboration with Fermilab, RadiaSoft to study the limits of existing space charge 

algorithms for the challenging case of intense long, bunched beams with space charge. 
 
•  Implementation of the location-dependent physical aperture for the IOTA lattice into the 

existing Impact-Z model to enable beam loss prediction. 
 



 
 

Conclusions 
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•  New numerical tools are needed for studying high-resolution halo formation, beam losses, 

and errors in the presence of nonlinear integrable optics, while avoiding artifacts due to 
numerical noise.  Such studies may be critical to successful proton operation in IOTA. 

•  Cross-checks among several codes (Synergia, Impact-Z, WARP...) are critical to gain 
confidence in simulations of nonlinear integrable optics with space charge. 

•  Impact-Z contains scalable and robust Poisson solvers that are ideal for high-resolution, 
long-term studies of collective space charge instabilities, and additional capabilities have 
now been implemented that will aid in high-fidelity simulation of IOTA. 

 
•  Successful benchmarks have been performed of the nonlinear insert, matched beam 

generation, linear lattice optics, and space charge capabilities, and studies have begun 
      to reveal interesting physics. 
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•  Backup slides 



 
 

Milestones for Task Area 1:  toward high-fidelity simulation 
of the IOTA lattice (reported Dec. 21, 2016) 
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#  Implementation of the IOTA nonlinear magnetic insert in IMPACT-Z. 

#  Implementation of new IOTA-specific diagnostic output in IMPACT-Z, for characterizing 
statistics of the two invariants and normalized phase space coordinates. 

 
#  Successful benchmarking of the IOTA nonlinear insert without space charge. 

#  Development of a new diagnostic tool for characterizing beam mismatch to the nonlinear 
lattice. 

#  Improvements in the Python MAD-X – Impact-Z lattice parser, to easily generate IMPACT-Z 
input files from IOTA lattice files (provided in MAD-X). 

#  Successful benchmarking of the linear IOTA lattice with and without space charge (against 
Synergia+WARP). 

 



 
 

Milestones for Task Area 1:  toward high-fidelity simulation 
of the IOTA lattice (since Dec. 21, 2016) 
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#  New analytical treatment of the Bertrand-Darboux equation for integrable potentials. 

#  Development and distribution of an improved tracking model through the ideal IOTA 
       nonlinear insert using complex potentials (avoids runaway particles, numerical artifacts). 

#  Use of surface methods/generalized gradients to characterize the physical IOTA nonlinear 
insert magnetic field (RadiaBeam) to allow realistic tracking with fringe fields. 

 
#  Investigation of long-term emittance growth (100K turns) due to nonlinear effects in the 

IOTA lattice without the insert present – fringe fields and nonlinear kinematic effects. 

#  Benchmarking between IMPACT-Z and ML/I (with R. Ryne), with the goal of map analysis. 

#  Improvements in the IMPACT-Z quadrupole model, relevant for p operation (low energy). 
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Horizontal RMS Envelope – Turn 50 

     Synergia 
      WARP 
      Impact-Z 

- Good agreement between Impact-Z, WARP, and Synergia over 50 turns. 
- Impact-Z is critical to provide cross-checks of Synergia, and scales efficiently to large number  
of particles and grid points.  (Synergia simulation by C. Hall, WARP simulation by R. Kishek.) 
 
Impact-Z simulation uses 1M particles, 32x32x1025 grid, longitudinally periodic BC. 

Kinetic energy 2.5 MeV 

Space charge tune shift -0.1 

Emittance εx  
(rms, unnormalized) 

5.0 mm- 
mrad 

differences < 1.5% 

Proton beam parameters 

Beam dynamics in IOTA provides a challenging test-bed for 
numerical space charge benchmarking. 

•  βx = βy , D = 0 across the nonlinear drift space 
•  nπ phase advance from nonlinear drift space 
       exit to nonlinear drift space entrance  
 

sextupoles off 

nonlinear insert off 
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1) Exact Hamiltonian splitting: 

2) Paraxial drift splitting: 

3) Linearized drift splitting: 

Step of size τ: 

HNLL

MH(⌧) ⇡ MD

⇣⌧
2

⌘
MNLL(⌧)MD

⇣⌧
2

⌘
H = HD +HNLL

In the special case when δ = 0, note that 2) and 3) are equivalent. 

Symplectic integrator options for the ideal IOTA magnetic 
insert in IMPACT-Z 



 
 

Single-particle tracking using the nonlinear insert:   
integrable motion in the Toy benchmark lattice 
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t = 0.45 
µ0 = 0.3 
L = 2.0 m 
c = 0.01 m1/2 

H = 0.2246  
I  = 0.3774 

(x,px,y,py) = (-0.173,-0.558,-0.082,0.284) 

Insert parameters 

Initial conditions (normalized) 

singular points at X=±1 
(magnetic pole tips) 

orbit fills  
a 2-torus 

- lattice consists of nonlinear  
  insert + a linear focusing lens 
- a single orbit is shown over 
  100 turns 

two invariants H and I 
are preserved (< 10-4) 



 
 

Nonlinear matched beam generation has been 
successfully coupled with IMPACT-Z simulation. 
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•  Shared Python scripts developed by RadiaSoft are used for matched KV or matched 

waterbag beam generation and imported to Impact-Z. 
 
•  Matched beam generation internal to Impact-Z will be critical for scaling to large 

particle numbers, and implementation is in progress.  
 1S. Webb et al, p. 3099, IPAC 2013.  

Matching to the nonlinear lattice is nontrivial and may be critical to beam performance.  

physical phase space 
variables (x, x’, y, y’) 

canonical 
transformation 

normalized phase space 
variables (xN , x’N , yN , y’N) 

- Hamiltonian is s-dependent 
- distribution varies periodically in s 
- parameter ε0 plays the role of emittance  

f ⇠ �(H � ✏0)
“nonlinear KV distribution” [1] 

- Hamiltonian is s-independent 
- distribution function is stationary 



 
 

Benchmarks between IMPACT-Z and ML/I resulted in an 
improvement of IMPACT-Z quad model at low energy. 
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A spurious nonlinear contribution to quadrupole tracking was repaired that is negligible at 
high energies, but important at the 2.5 MeV p energy of IOTA. 

Previous quadrupole model  Improved quadrupole model 

remaining oscillations due 
to kinematic nonlinearities 

✏
x

✏y ✏y

✏
x

p
✏
x

✏
y

p
✏
x

✏
y

caused by a nonlinear chromatic effect  
due to energy-dependent normalization of 
the quadrupole strength K 

signficant  
emitttance 
change 


